
www.ijecs.in

International Journal Of Engineering And Computer Science

Volume 9 Issue 08 August 2020, Page No. 25132-25147

ISSN: 2319-7242 DOI: 10.18535/ijecs/v9i08.4520

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25132-25147 Page 25132

Machine Learning for Database Management Systems

Sai Tanishq N

Gokaraju Rangaraju Institute of Engineering And Technology

Abstract:

Machine Learning (ML) is transforming the world with research breakthroughs that are leading to the progress

of every field. We are living in an era of data explosion. This further improves the output as data that can be fed

to the models is more than it has ever been. Therefore, prediction algorithms are now capable of solving many

of the complex problems that we face by leveraging the power of data. The models are capable of correlating a

dataset and its features with an accuracy that humans fail to achieve. Bearing this in mind, this research takes an

in-depth look into the of problem- solving potential of ML in the area of Database Management Systems

(DBMS). Although ML hallmarks significant scientific milestones, the field is still in its infancy. The

limitations of ML models are also studied in this paper.

1. Introduction

A computer program is said to learn from

experience E with respect to some class of tasks T

and performance measure P if its performance at

tasks in T, as measured by P, improves with

experience E [33]. In order to fix the ideas, it is

useful to introduce the machine learning

methodology as an alternative to the conventional

engineering approach for the design of an

algorithmic solution [34]. The goal of machine

learning is to program computers to use example

data or past experience to solve a given problem.

Many successful applications of machine learning

exist already, including systems that analyze past

sales data to predict customer behavior, optimize

robot behavior so that a task can be completed using

minimum resources, and extract knowledge from

bioinformatics data. [35] Integrating machine

learning into DBMS is an ongoing effort in both

academia and industry. The combination of ML and

DBMS is attractive because businesses have

massive amounts of data residing in their existing

DBMS [36]. Furthermore, relational operators can

be used to pre-process and denormalize a complex

schema conveniently before executing ML tasks

[37].

DBMS developers have to use heuristics, restrict the

problem space, or even rely on human intervention

to solve problems such as query optimization,

physical database design optimization, and buffer

management. The goal of these heuristics and

restrictions is not to find an optimal solution for a

particular instance, but to find a solution which has

a safe worst-case performance on all cases.

Alternatively, ML provides a flexible framework to

automatically learn an efficient program to solve

these problems for a specific instance without being

explicitly programmed by a human developer.

The paper is primarily focused at relational database

management systems (RDBMSs) because they

remain the most widely used DBMS type. We

survey the existing landscape of ML to solve hard

programming problems in DBMSs. DBMS is

divided into three main sub-components in this

paper: 1) Query Parser, 2) Relational Engine, and 3)

Execution Engine. After providing some

background on each of these subcomponents and

different ML methods, several systems that have

been proposed using ML are identified. These

include systems in Query Parser, Relational Engine,

and Execution Engine in Section 3, 4, and 5,

respectively. In Section 6, three overarching design

decisions are identified that a DBMS developer has

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25132

Figure 1: Systems surveyed in this paper, DBMS component they optimize, and the design choices they make

(DL: Deep Learning, RL: Reinforcement Learning).

to make when incorporating ML into a DBMS. An

abstract summary of where the surveyed systems

fall in this taxonomy is presented in Figure 1. In

Section 7, we identify three open challenges to ML:

1) improving robustness, 2) re-thinking the DBMS

architecture, and 3) exploiting transfer learning.

2. Background

We provide some background on the database

management system internals and machine learning

methods to help understand the rest of this survey.

2.1 Database Management Systems

Figure 2: Steps in query processing

We identify three main components of a DBMS: 1)

Query Parser, 2) Relational Engine, and 3)

Execution Engine. To give a brief introduction to

each of these components, we next explain the

journey of a typical SQL query.

Example Query. Alice is a data analyst at an

online e-commerce website and she wants to find

the top 10 products in terms of sales revenue. She

writes a SQL query using the SQL client in her

laptop and submits it to the DMBS for execution.

Query Parser. At the DBMS, the SQL query will

be first intercepted by the query parser. The query

parser will verify the query is 1) free from syntax

and semantic errors, 2) verify the user is authorized

to execute the query, and 3) convert the query into

the internal format used by the system.

Relational Engine. The parsed query is then sent to

the relational engine which outputs an optimal

query evaluation plan (QEP) for the given query. It

does so

by searching the space of possible query evaluation

plans and estimating the cost of each option. For

this task, it relies on the metadata information and

statistics about the data in the DBMS, which has to

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25133

be generated beforehand. QEP dictates the order of

execution of each relational operator and which

physical operator implementation to be used.

Execution Engine. Finally, the QEP is sent to the

execution engine for execution, which is

responsible for managing all the low-level system

resources such as memory buffers and thread pools,

accessing the data and indices, and coordinating the

execution of the query either on a single machine or

on multiple machines. It also handles concurrency

control and failure recovery of the DBMS. The

output generated by executing the query is sent back

to Alice.

Database Administrator. Being complex software

systems, DBMSs require a significant amount of

tuning to achieve good performance for a particular

use case. To worsen the situation, the set of default

configurations in the DBMS are often obsolete and

do not match the resource availability of modern

hardware (e.g., MySQL default buffer pool size is

128MB!). Thus, in Alice’s use case, the DBMS has

to be tuned to the schema of the database and the set

of widely used queries by the analysts in her

company. Furthermore, for query optimization the

relevant data statistics have to be generated

beforehand and kept up to date. Typically, these

tasks are performed by a database administrator

who has specialized knowledge about the internals

of the DBMS.

2.2 Machine Learning Methods

For the purpose of this paper, we divide machine

learning into two major model families: 1) deep

learning and 2) classical machine learning.

Deep Learning. Deep learning (DL) [1] is the name

given to the family of ML models that are

composed of artificial neural networks (ANNs).

ANNs are inspired by the structure and function of

the human brain. They learn a hierarchy of

parametric features using layers of various types

(e.g., fully connected, ReLU). All parameters are

trained using a technique called back-propagation.

Training a deep learning

model incurs massive costs: they typically need

many GPUs for reasonable runtimes, huge labeled

datasets, and complex hyper-parameter tuning.

Recently, DL methods have been able to produce

superior accuracy results outperforming other ML

methods on hard tasks like computer vision and

natural language processing. In some cases, they

have even surpassed the human-level accuracy.

Classical Machine Learning. Despite many

successes using DL-based ML methods, in many

applications that involve working with structured

data, ML model families like generalized linear

models, decision tree models, and Bayesian models

are widely used. Typically, these model families are

collectively referred to as classical machine

learning, a term coined to contrast them with DL

models. Unlike DL models, which can all be trained

using back-propagation method, each sub-family in

classical ML uses different statistical learning

foundations and learning methods. Furthermore,

their characteristics are also significantly different

among different sub-families.

For the above two ML model families, we further

identify three different learning paradigms: 1)

supervised learning, 2) unsupervised learning, and

3) reinforcement learning.

Supervised Learning. In supervised learning,

training data consists of a set of input (also called

features) and output pairs. The goal of the ML

model is to learn a prediction function that takes in

unseen inputs and predicts an output value such that

the discrepancy between the predicted value and the

actual value corresponding to the unseen input is

minimized. Supervised learning is applicable in

settings where there is a direct observable mapping

between input and output, a large amount of

training data available, and we are confident that the

training data covers the entire data distribution.

Unsupervised Learning. In unsupervised learning,

the training data contains only the input and no

explicit output. The purpose of the ML model is to

learn a function that can discern the latent structure

of the inputs. Given an unseen test input, the trained

unsupervised ML model can be used to predict the

structural properties of the input. Popular

applications of unsupervised learning include

probability density function estimation and data

clustering.

Reinforcement Learning. The goal of

reinforcement learning methods is to learn a

function that takes in an input state and generates an

action that will maximize the overall cumulative

reward (not the immediate reward as in supervised

learning). Unlike supervised learning methods, they

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25134

do not make any assumptions about the data

generating process and also do not require a training

set of state-action (input-output) pairs to be

presented. State-action pairs are generated as the

model interacts with the environment and models

use an explore-exploit paradigm to learn while

being used to make predictions at the same time.

Reinforcement learning techniques are useful in

settings where the reward of action is not directly

observable and we want the model to try different

things and pick the best option. However, as there is

no initial assumption on the data generating process

(e.g., through training data), in some problems

reinforcement learning method will fail or take a

very long time to learn.

3. Query Parser

The task of the query parsing sub-component in a

DBMS is to check whether a given SQL query in

text format is free from syntax and grammar errors

and if so, translate it into a relational algebra

expression, which is an already solved problem.

Hence, most of the new work on query parsing

focuses on supporting query modalities beyond text

and relaxing the grammar of SQL to support natural

language-based querying. Recent advancements in

natural language processing using deep learning

techniques provide a promising opportunity to

achieve these goals.

3.1 Expanding the Query Modalities

3.1.1 Speaking SQL Queries

SpeakQL [2] provides a speech-driven querying

interface, which can be used to query data by

speaking out a SQL query instead of typing it. It

uses an off the shelf automatic speech recognition

engine to compile a spoken SQL query into text

form and use knowledge about the schema of the

underlying data to refine the structure and the

literals of the query. SpeakQL is able to capture

complex SQL queries but puts significant cognitive

load on the user when dictating such queries.

3.1.2 Speaking Natural Language Queries

Seq2SQL [3] and SQLNet [4] are two systems that

focus on compiling natural language queries into

SQL. Seq2SQL uses a large dataset (n=84,000) of

manually annotated natural language-SQL pairs and

trains a deep reinforcement learning model to

compile natural language queries into SQL.

SQLNet uses the same training dataset and uses a

neural machine translation approach. While these

systems have shown some early promising results

for supporting natural language queries over single

table data, their accuracy significantly suffers for

complex queries that involve joins over multiple

tables.

4. ML for Relational Engine

Relational Engine is one of the most important

components in a database management system, that

has been extensively studied for the last 40 years.

We identify three different sub-areas of ML

applications in the relational engine: ML for (1)

query optimization, (2) physical database design

automation, and (3) approximate query processing.

Next, we discuss some of the most prominent works

in each of these sub-areas.

4.1 Query Optimization

The goal of query optimization is to transform an

input relational algebra expression into an optimal

query evaluation plan (QEP). To achieve this,

traditional query optimizers perform a search over

the space of potential QEPs and pick the one with

the least total cost. However, estimating the total

cost is a complex task and it is often approximated

by estimating the total size of the intermediate

tuples generated during query evaluation. This is

called the cardinality estimation problem, which

remains still an unsolved problem despite

advancements over many decades. Database

optimizers often make assumptions such as

uniformity, independence, and the principle of

inclusion [5] to perform cardinality

estimation. These assumptions often do not hold in

real data and optimizers tend to under- or over-

estimate the query cost and pick sub-optimal query

evaluation plans, which can be worse by orders of

magnitude. We found that the use of ML for query

optimization can be broadly divided into two major

approaches. The first approach is to train ML

models for cardinality estimation and integrate them

with the existing search strategies in the optimizer.

The second approach is to completely replace the

traditional query optimizer by using ML to generate

the QEP, end-to-end.

4.1.1 Cardinality Estimation

We identify three different methods for learning

ML models for cardinality estimation.

Predicate Level Models. LEO [6] is one of the

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25135

very first systems developed to use ML techniques

to improve the cardinality estimation. It uses the

optimizer estimated cardinalities and the

cardinalities observed during execution to learn

predicate level linear models to predict the correct

output cardinalities. However, not accounting for

QEP structure and using the optimizer estimated

cardinality as the only feature prevents LEO from

achieving high accuracies.

Sub-graph Level Models. CardLearner [7] extends

the idea of LEO and builds ML models to predict

cardinalities of commonly occurring query

templates instead of each predicate. A template is a

family of queries with the same structure but

varying parameters and inputs. Instead of training

one single model for all commonly occurring query

templates, it trains separate ML models for each

template. CardLerarner uses several hand-

engineered features including metadata features,

input cardinalities of all input datasets, and features

associated with operators. Operating on query

templates enables CardLearner to capture the

semantics of the QEP and correlation in data and

yield better results compared to predicate level

approaches such as LEO. However, its accuracy

degrades when faced with new queries and queries

which have unseen sub- graphs.

Graph Level Models. One could also train ML

models to predict the output cardinality of entire

QEPs. QPPNet uses a novel neural network

architecture that matches the QEP structure. It is

composed of stacking sub-neural-modules

corresponding to each operator in the QEP which

takes in hand-engineered features as well as output

from other sub- neural-modules. As a result, it can

learn the correlation in data, relationships between

operator features, and plan structure to predict the

QEP cost more accurately. However, one of the

limitations of replacing just the cardinality

estimation component in the optimizer is that the

model will have zero knowledge about the plans

that were never generated by the optimizer, which

limits the optimizer’s ability to generate new and

better plans.

Thus, instead of learning from query workloads,

Naru [8], and DeepDB [9] try to solve the

cardinality estimation problem by modeling the

joint probability distribution of the data. Naru uses

deep autoregressive models and combines it with a

novel Monte Carlo integration scheme to efficiently

support range and wildcard queries. DeepDB uses

Relational Sum-Product Networks (RSPNs), a

variant of a probabilistic graphical model, to model

the joint probability distribution.

It is important to mention that some of the above

systems (e.g., LEO in IBM DB2 and CardLearner in

Microsoft SCOPE) have been (or are being) used in

enterprise systems.

Query Evaluation Plan Generation The QEP

search strategy in the optimizer closely resembles

the reinforcement learning (RL) methods in

machine learning. Hence, several systems have tried

to replace the entire QEP generation process using

RL instead of using ML models to augment an

existing optimizer. This ability to learn from the

feedback from the chosen QEPs enables RL models

to avoid choosing the same bad QEP over and over

again. We identify two different methods of using

RL for generating QEPs end-to-end.

Intra-Query Classical RL. SkinnerDB [10]

proposes an intra-query regret-bounded RL learning

strategy to find the optimal join ordering for a QEP.

Instead of learning from past query executions, it

uses UTC algorithm [11] to learn from the current

query execution to optimize the remaining of the

current query. While this approach incurs some

overheads due to cold starting for every query, the

overall overheads remain negligible as it can avoid

catastrophic join order choices.

Deep RL. ReJoin [12] and Neo [13] use recent

advancements in deep reinforcement learning to

generate optimal QEPs. ReJoin uses the existing

cost model of the optimizer to learn a policy

network that can outperform the optimizer search

strategy after more online training. Neo uses the

observed latency of QEP executions to learn a value

network to predict the latency of any new QEP. To

reduce learning time and avoid choosing and

evaluating prohibitively expensive join orders, Neo

bootstraps the value network using latencies

observed for the QEPs generated by a traditional

query optimizer.

While the above systems have shown some early

promising results on the ability of ML techniques to

replace the traditional query optimizers, a vast

number of important challenges remain open to

enable practical adoption. For example, these

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25136

systems make simplifying assumptions on the

grammar of supported queries, do not support

physical operator selection, and in some cases

assumes the availability of customized execution

engines (e.g., SkinnerDB [10]).

4.2 Physical Database Design Automation

One of the most important properties of DBMSs is

physical data independence. This allows changing

the physical structure of the database without

requiring to change the user queries. However, the

physical database design significantly affects the

performance and has to be tuned for a specific use

case. Physical database design choices include

creating indices, selecting materialized views, and

selecting data partitioning. Traditionally, this has

been the responsibility of database administration

personnel and they have used heuristics and human

judgment to perform these tasks. Several systems

have used ML techniques that learn from workload

patterns either to develop decision support systems

for database administrators or to automate the

process. We identify two different methods for

integrating ML for physical database design

automation.

4.2.1 Reactive Systems

SQL Server AutoAdmin [14] system is one of the

very first systems to adopt ML techniques for the

physical database design process. It adopts a

reactive strategy where it takes in a historical query

work-load and searches for a configuration that

minimizes the cost of execution of the workload and

recommends that to the database administrator. The

chosen configuration dictates which indices and

materialized-views to be created and which data

partitioning scheme to be used. The search strategy

uses a variant of frequent itemsets mining

techniques to efficiently explore the enormous

search space generated by a large number of

possibilities. The search strategy also requires

estimating the cost of a new configuration without

actually executing the workload. To achieve this,

AutoAdmin extends the query optimizer’s cost

model to support what-if queries which can assume

the presence of a selected set of configurations

(either hypothetical or materialized) and ignore the

presence of other configurations. However, due to

the well-known limitations of the optimizer’s cost

model, a configuration that the optimizer thinks is

better than others can be worse when implemented.

In a followup work [15], AutoAdmin uses ML

models trained on past QEP execution experiences

to obtain confidence in the selected configuration

before making the actual change. It does so by

formulating a classification problem to predict

whether the new configuration will be better than

the current configuration.

4.2.2 Proactive Systems

Configurations chosen by reactive systems like

AutoAdmin may be sub-optimal for the workload in

the near future. On the contrary systems like

QB5000 [16] and DQM [17] takes a proactive

strategy for physical database design that

completely automates the process without any

intervention of a human. QB5000 trains ML

models to predict the query workload to the future

and uses that to select the best set of indices. DQM

trains a deep RL model to learn a policy to

opportunistically select and evict materialized views

subject to storage constraints, that will have the

most benefit into the future. While these systems

have shown promising initial results, much work is

still needed to improve the robustness before

incorporating them into enterprise systems.

4.3 Approximate Query Processing

Figure 3: Input Data Size vs Query Response

Time graph

While the ever-growing volumes of data enable us

to glean unprecedented insights, the associated high

computational and resource costs often become a

bottleneck. Approximate query processing (AQP)

techniques try to mitigate this issue by generating

approximate answers to the original query at a

fraction of the time and cost of the original query

execution. The conventional approach to AQP is to

use query time data sampling and data statistics to

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25137

answer queries. After the query is executed, the

work done for that query is never reused. However,

every new query execution reveals some new

information about the data and executing more and

more queries over time enables us to refine that

information even further. Thus, machine learning

techniques provide an interesting opportunity to

learn from past query executions and use that

learning to approximately answer future queries.

We identify two different methods of using ML for

AQP.

4.3.1 Augmenting Existing AQP Components

Verdict [18] is one of the first systems to apply this

technique in the context of AQP. It uses a data

structure called Query Synopsis to store the past

query results and uses it to refine the approximate

answer generated by the system for new queries.

Thus, Verdict can reduce the runtime required for

an approximate query for specified error bound or

reduce the error bound for an approximate query

with a specified time budget. This is achieved by

modeling a multivariate normal distribution model

using the principle of maximum entropy.

4.3.2 Replacing Existing AQP Components

Instead of learning from past queries and

augmenting sampling-based methods with ML

methods at execution time, DBEst [19] takes a pure

ML-based approach for answering AQP queries. It

samples data corresponding to each predicate

attribute and group by attribute values and trains

regression and density models. At execution time it

uses the corresponding models and performs

integration over those models to generate AQP

result. Similarly, DeepDB [9] also uses ML

methods to learn the joint probability distribution of

the data, which can be used to answer AQP queries.

The type of the ML models used by DeepDB is

called Relational Sum-Product Networks (RSPN),

which belongs probabilistic graphical model family.

Given a relational database and the correlations

between columns, DeepDB trains RSPNs for the

tables and use the RSPN ensemble to answer SQL

queries by compiling them into inference

procedures over the RSPNs.

5. ML for Execution Engine

In this section, we identify several prominent works

that use ML methods to either augment or replace

critical components in a database execution engine.

We categorize them into three major sub-areas: ML

for 1) knob tuning, 2) scheduling and resource

provisioning, and 3) data structures and algorithms.

5.1 Knob Tuning

The performance of the database execution engine

is highly dependant on the chosen values of the

tunable knobs which control nearly all aspects of

the runtime

Operations. For example, these knobs control

aspects such as how much memory to be used for

caching data versus transaction log buffer, how

often the data to be written to the disk, and things

like query execution parallelism. Similar to physical

data- base design, finding a good knob

configuration for a target query workload is

generally the responsibility of database

administration personnel, for which they either use

common sense heuristics and/or a trial and error

procedure. Alternatively, one could use ML

techniques to automatically find an optimal knob

configuration for a target query workload.

iTuned [20] approaches this problem by executing a

series of carefully-planned experiments and picking

the configuration which minimizes the overall

workload time. Given a target query workload

iTuned uses Latin hypercube sampling to pick an

initial set of configurations and execute them to

obtain the execution time. The results are then

modeled using a Gaussian process representation to

pick the next configuration to be executed. This

process continues until a good enough configuration

is found. It also uses several techniques to reduce

the overall tuning time including early elimination

of configurations with insignificant improvements,

executing parallel experiments, and compressing the

query workload.

Similarly, OtterTune [21] also executes a series of

experiments chosen by modeling a Gaussian

representation process. However, instead of starting

with a sampled set of initial configurations, it maps

the current workload to a similar previous workload

which has been already tuned and uses that to pick

the next experiment configuration. Leveraging the

learning from previous workloads helps OtterTune

to finish the tuning process much faster than

iTuned. Workload mapping is achieved through a

workload characterization step which combines

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25138

factor analysis (over metrics obtained through

database monitoring tools) and k-means clustering.

It also prunes irrelevant knob configurations ranked

using Lasso feature selection and incrementally

increase the number of tuned configuration based

on their importance as tuning progresses.

iBTune [22] is a system for reducing buffer pool

sizes of cloud OLTP database instances to reclaim

memory while conforming to the service level

agreements (SLA) on query response time. It

iteratively uses data from other instances with

similar workloads to choose a target buffer pool size

using large deviation analysis. But before making

the change, it uses a pairwise deep neural network

to predict the new response time and proceeds only

if the predicted value is within the SLA. One of the

major bottlenecks for ML-based knob tuning

methods is not having access to low-level/sub-

component level system performance metrics.

While database systems do provide metrics, they

often happen to be aggregated at the entire system

level and are less informative to tune sub-

component level knobs. Another bottleneck is the

inability to change system configuration values

without complete system restarts. Database systems

are not designed to be tuned by iteratively executing

multiple experiments. But, ML-based methods

require on the fly configuration testing which incurs

significant overheads.

5.2 Resource Provisioning and Scheduling

Execution engines have to make several planning

decisions to meet the service level objectives

imposed by users as they execute QEPs. This

includes resource provisioning: deciding how many

machines to be used for execution and/or

scheduling: deciding which QEP to be executed on

which worker and in which order. The emergence

of cloud computing environments makes these

planning decisions even more important because of

their pay- as-you-go model. The existing approach

taken by many database systems is to use human-

engineered rules or heuristics-based approaches,

which are often too rigid and slow to respond to the

rapid and dynamic query workloads. Alternatively,

ML provides an opportunity to automatically learn

these planning decisions using past query

workloads. We identify two different settings of

applying ML for resource provisioning and

scheduling.

5.2.1 Provisioning and Scheduling for Batch

Processing

WiSeDB [23] is a workload management service

for cloud databases, which holistically addresses

both the resource provisioning and scheduling

problems. It takes in a query workload, the runtime

of each query on each machine type, a user-defined

target performance goal (e.g., average/max latency,

percentile-based metrics), and recommends a set of

strategies and their associated costs to the user.

Under certain assumptions, solving the original

planning problem can be reduced to the bin packing

problem which is an NP-hard problem. WiSeDB

samples a large number of small workloads from

the original workload and solves them using a brute

force graph search algorithm. It then extracts

decisions and features from each of the decisions

made by the graph algorithm and trains a decision

tree model. Finally, this decision tree model is used

to generate the planning strategies and their

associated costs for the original work-load. By

using a learning-based adaptive strategy, WiSeDB

can outperform many heuristic-based techniques

with little training overhead. One of the major

limitations of WiSeDB is that it requires the user to

provide cost estimates for each query, and

accurately estimating the cost of previously unseen

queries is an open challenge.

5.2.2 Provisioning and Scheduling for Online

Processing

Similar to WiSeDB, Bandit [24] is another system

for solving the provisioning and scheduling problem

of cloud database systems which focuses on online

scheduling rather than batch scheduling. It models

the planning problem as a multi-tiered contextual

multi-arm bandit problem (CMAB), a well-known

reinforcement learning technique. The tiers in the

CMAB corresponds to the different VM types and

they are organized in the descending order of their

capacity/cost. The goal of the CMAB is to reduce

the overall cost, which can be both monetary cost or

cost due to not meeting a deadline. When a new

query arrives, starting from the first

VM of the first tier the CMAB model iteratively

makes one of three choices,

1) Assign the query to the current machine,

2) Send the query to next machine of the current

tier,

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25139

and

3) Send the query to the next tier. As the context, it

uses features from both the query and the current

state of the VM. Hence, it can implicitly estimate

the cost of a query as part of the learning problem

and support previously unseen queries. PerfEnforce

[25] also uses ML techniques based on

reinforcement learning and multi-layer perceptrons

to automatically scale the size of a data processing

cluster to meet the user-defined target performance

goal.

While the above systems have shown promising

results on the ability to replace provisioning and

scheduling components using ML, there has not

been much adoption in real-world systems, and

there is a reluctance among systems developers to

put scalability decisions in the hands of machine

learning algorithms. One of the major reasons for

this is the inability of ML techniques to provide

bounds on the worst-case scenario. But as ML

techniques get more robust, it can be expected that

existing heuristics-based planning modules will get

replaced by learned components.

5.3 Data Structures and Algorithms

Every operation that is executed by the execution

engine heavily relies on core data structures such as

index structures and algorithms such as sorting.

These data structures and algorithms do not make

any assumptions on the distribution of the data and

give guarantees on the worst-case performance.

However, in some cases, if we know certain

properties about the distribution of the underlying

data, it is possible to come up with data structures

and algorithms that can yield superior performance.

ML provides a flexible framework for learning the

empirical data distribution and a recent line of

research has shown the possibility of using ML

models to replace core data structures and

algorithms in DBMSs.

5.3.1 Learned B-Tree Indices

Learned Index [26] is the first system to propose the

idea of using ML models to replace core data

structures and algorithms. It focussed mainly on

replacing B-Tree indices. Given a key, what a B-

Tree index essentially does is finding its position on

a sorted list using a series of tree traversals. B-

Trees also give a guarantee on the error on the

selected position: the maximum error is bounded by

the page size. In this sense, a B-Tree index is a

model that captures the cumulative distribution

function (CDF) of the key values. Thus, it is

possible to replace the B-Tree index with an ML

model that is trained to capture the CDF of the keys.

The error guarantee of the ML model can be found

during training, which is the maximum training

error for any key. Interestingly, unlike other ML

applications, the objective here is to minimize the

training error and not the generalization error. The

advantage of replacing a B-Tree index using an ML

model is that it reduces both the lookup time and

memory footprint of the index.

FITing-Tree [27] is another system that replaces B-

Tree indices using learned ML models. It uses a set

of piece-wise disjoint linear functions to

approximate the CDF distribution of the keys and

uses a conventional B-Tree index to map a key to

the correct linear function. Using linear functions

helps FITing-Tree achieve fast look-ups and also

support inserts, which was one of the major

limitations of the Learned Index system. It also

provides a tunable knob to make the index optimize

either for faster look-ups or smaller memory

footprint.

XIndex [28] is a concurrent learned index that

supports read, write, and update operations. The

architecture of XIndex is similar to that of FITing-

Tree. However, the root node in XIndex also uses a

linear model, unlike the B-Tree index in the FITing-

Tree. For enabling concurrent updates it uses a delta

index and periodically runs a two-phase compaction

scheme to merge and copy the delta index with the

main index structure. Concurrency during this

compaction stage is enabled through classical

concurrency constructs such as the read-copy-

update

barrier. In addition to this, XIndex also adapts its

structure at runtime to optimize for the query

distribution. During learning, both Learned Index

and FITing-Tree try to minimize the worst-case

error. In practice, most query workloads are highly

skewed and their runtime performance will be

determined by the performance on a small set of

hotkeys. XIndex monitors the observed error during

runtime and tries to split the regions that observe

high error into multiple models to reduce the error.

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25140

5.3.2 Other Learned Data Structures and

Algorithms

Learned Index system also proposed methods to

replace several other DBMS data structures and

algorithms using learned ML models such as

learned hash maps, sorting, and bloom filters. One

of the main issues with hash map structures is

getting hash collisions which increases the latency

of retrievals. An ML model that captures the CDF

can be used to replace the hash function and thus

reduce the number of hash collisions. The same

CDF model can be used to sort the data more

efficiently by first ordering the data in nearly sorted

order and then using insertion/bubble sort. Bloom

filters can be replaced by training a classification

model for which the decision threshold is chosen

such that the false-negative rate is zero. While these

systems have shown initial promising results for the

feasibility of replacing core data structures and

algorithms using ML models, much work is still

needed to make them available for enterprise

DBMSs.

6. Design Choices

We discuss three main overarching design choices

that one has to make when integrating ML

components into DBMSs:

1) integration mode, 2) learning source and 3)

choice of ML paradigm.

6.1 Integration Mode

We found that there are two main engineering

approaches for integrating ML components into

DBMSs: external vs. internal integration [29].

6.1.1 External Integration

Modern DBMSs are complex systems and they

allow human database administrators to control the

query execution performance by (1) optimizing the

physical database design, (2) providing query

optimization hints, (3) knob tuning, and (4) resource

provisioning. They also provide information about

the system such as resource usage, query traces, and

performance metrics. Under this context, the focus

of externally integrated ML components is to

provide recommendations to human database

administrators or replace them and automatically

perform the tasks using the standard configuration

endpoints provided by the DBMS.

An enterprise-grade DBMS typically requires

decades of highly advanced software development

efforts and thus there is huge resistance among

DBMS developers to integrate new components that

require significant architectural changes. External

integration keeps the ML components outside the

critical path of a DBMS and still provides a value.

For this reason, most of the systems surveyed in this

paper fall into this category (see Figure 1) and some

have even been successfully adopted by several

enterprise DBMSs.

However, external integration also faces several

limitations. First developing multiple external

components that operate on different sub-problems

may lead to interference among the decisions taken

by those systems. For example, assume an external

query optimization component that hints a specific

query plan to DBMS assuming the absence of a

particular index. At the same time assume there is

another physical database design component that

decides to create this index which renders the

chosen evaluation plan become sub-optimal.

Avoiding this kind of interference requires co-

ordination among different components, which is

difficult to implement in external components.

Second, external components for knob tuning and

resource provisioning take an iterative approach

where they try out several different settings before

picking the best option. Existing DBMSs are not

optimized for

such rapid experimentation and hence require

system downtimes or restarts for the configurations

to take effect. This significantly increases the time

required for knob tuning by an ML component.

Finally, the system information metrics provided by

the DBMSs are primarily intended to be consumed

by human database administrators for diagnosing

performance bottlenecks. Thus, they can be too

high- level for ML components to learn from.

6.1.2 Internal Integration

Internal integration of ML components tries to

mitigate much of the above-mentioned limitations

by changing the DBMS architecture to treat ML

components as first-class components. As a result,

ML components get more access to the low-level

information and more fine-grained control to the

DBMS. Coherence among the decisions taken by

multiple ML components inside a DBMS can be

achieved by having a centralized coordinator that

takes suggested actions from different ML

components and execute them only if they don’t

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25141

interfere with other decisions. However, internal

integration requires tight coupling between the

components inside a DBMS and can pose query

execution performance degradation when training

the ML models. Hence, they are mostly applicable

to new data system developments that are being

developed from scratch (also called greenfield

systems).

NoisePage [30] is one such green field system for

in- memory hybrid transactional and analytic

processing, which can automatically optimize query

execution without a human database administrator.

It focusses on knob tuning, resource provisioning,

and physical database design optimization. It also

has a modular architecture optimized for efficient

offline training data collection by ML components.

Training data for each module (e.g., transaction

manager) can be obtained in isolation without the

need of going through the entire DBMS execution

path. These offline collected data is then combined

with the data collected through online query

execution to learn ML models. The ML pipeline in

NoisePage has three main phases: 1) modeling, 2)

planning, 3) deployment. In the modeling stage, it

builds models to predict the future query workload

and models to predict the behavior of system

components under different configuration values. In

the planning stage, it uses reinforcement learning to

pick actions based on the models trained in the

modeling phase, instead of interacting with the

actual system. Finally, in the deployment phase, the

chosen actions are applied and the observed

performance metrics are later fed back to modeling

and planning models to improve their performance.

SageDB [31] is another system that proposes a

novel DBMS architecture that uses ML models

combined with program synthesis techniques to

generate internal system components like data

structures and algorithms. To balance the training

time vs. accuracy it proposes using multiple ML

models each specialized for a particular task. ML

models in SageDB are optimized to capture the

empirical data distribution of the data and not

optimized for the ability to generalize to unseen

data. These synthesized systems components are

used for optimizing data access (e.g., indices),

query optimization (e.g., cardinality estimation),

and query execution (e.g., sorting).

6.2 Learning Source

The main goal of using ML for DBMS components

is to improve the performance of the system for

future query work-loads. Thus, one way for

adopting ML methods is to learn from past or

current (in the case of reinforcement learning)

queries. But the performance of the queries is

dependant on the state of the underlying data in the

DBMS. Hence, in some cases, it is also possible to

achieve the same goal by learning directly from the

data.

6.2.1 Learning from Queries

As shown in Figure 1, learning from query

workloads is the most widely used approach for

integrating ML into DBMS across all components.

Learning from queries enables the ML models to

learn a narrow-scoped problem which is much

easier to model/learn and hence improve the overall

performance of the system.

However, this approach faces three main

challenges. First, collecting training data for this

approach can

be expensive as each query needs to be executed on

large databases. Second, it does not generalize well

for unseen workload queries and causes significant

performance degradation at execution time. Third,

changes in the workload patterns or underlying data

require capturing new training data and expensive

retraining which can cause system downtime.

6.2.2 Learning from Data

More recently several systems have been proposed

that learn from DB-resident data, instead of query

workloads. These systems train models to learn the

empirical data distribution of the data and use them

to improve DBMS performance. For example,

DBEst [19] and DeepDB [9] uses probability

distribution models to answer AQP queries. Naru

[8] and DeepDB [9] use joint probability

distribution models in the relational engine to

optimize cardinality estimates. Empirical data

distribution models are also the main building block

in learned data structures and algorithms such as

Learned Index [26], FITing-Tree [27], and XIndex

[28].

ML models trained using data can be reused despite

changes in the workload pattern and are also more

robust to small changes in the data. More

importantly, DeepDB [9] has shown that the same

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25142

probability distribution model can be used in

multiple tasks such as AQP and cardinality

estimation, reducing the total training time required.

However, accurately capturing the joint probability

distribution of a relational dataset with multiple

tables is a complex learning task that requires

models with high learning capacity and training

time. Furthermore, not all DBMS components can

be purely learned from data (e.g., execution engine

knob tuning).

6.2.3 Hybrid Methods

While most of the existing systems fall into one of

the above two approaches, it would be interesting to

explore the possibility of combining both

approaches. Some early work in this regard has

been proposed in the XIndex [28] system. XIndex is

a learned index structure that replaces B-tree

indices. It does so by learning the empirical

cumulative distribution function of the keys of the

data. During training, the goal is to minimize the

maximum error made by the model for predicting

the position of a key. But the performance of a

particular workload will be dominated by the errors

made by the model on the keys that are frequently

used in the workload. Hence, XIndex performs the

second phase of learning where it dynamically

further minimizes the error on the most frequently

used keys.

6.3 Choice of the ML Paradigm

We cover the use of different ML model and

learning paradigms for integrating ML into DBMSs.

6.3.1 ML Model Family

We observed two prominent families of ML

models: 1) deep learning and 2) classical ML.

Deep Learning. It should be noted that much of the

recent renaissance in applying ML methods for

DBMS internals, and also systems in general, has to

be credited to the recent advancements in deep

learning. Deep learning models have high model

capacities and hence can learn highly complex data

distributions. They have shown superior

performance in hard tasks such as in natural

language processing (NLP). As a result, the same

deep NLP models have been used in systems like

SpeakQL [2], SeqSQL [3], and SQLNet [4] to

provide spoken and/or natural language interfaces

for DBMSs. Naru [8] uses a transformer-based deep

learning model to learn the joint probability

distribution of the data for cardinality estimation.

Neo [13], DQM [17], and iBTune [22] also use

deep learning models for query optimization (QEP

generation), physical database design

(materialization optimization), and knob tuning

(buffer size tuning), respectively.

However, the high model capacity of deep learning

models and their ability to learn highly accurate

models come at a cost. First, these models require

significantly large amounts of training data without

which the models will start to overfit. In many

DBMS components, collecting large amounts of

training data is expensive as the queries have to be

executed potentially on large databases. Second,

deep learning models are highly compute-intensive

which can require few hours to a few days of

training even when using expensive hardware

accelerators such as GPUs. This can cause

degradation of DBMS query execution

performance. Furthermore, typically deep learning

inference times are in few hundreds of milliseconds

and do not match with the performance

requirements of the DBMS components such as

cardinality estimators and indices which have to be

in the order of few milliseconds. Finally, the

explainability/debuggability of deep learning

models is still an active area of research and there is

minimal understanding of the internal workings of

them. As a result, while deep learning-based

methods have shown promising accuracy results,

they are not yet widely integrated into enterprise

DBMSs due to the above open challenges.

Classical ML. We found that classical ML-based

methods are widely used to integrate ML into

DBMS components and some of them (e.g., LEO

[6], CardLearner [7], AutoAdmin [14], and

VerdictDB [18]) have been even integrated in the

enterprise systems. Classical ML methods

overcome much of the limitations of deep learning

methods: they are less compute-intensive to train,

require much less training data, have faster

inference times, and generate much easy to explain

predictions. However, most classical ML models

are known to have fewer model capacities and have

less predictive power compared to deep learning

models. Thus, their accuracy can be lower.

6.3.2 Learning Paradigm

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25143

We explain the use of three learning paradigms that

systems have used to integrate ML into DBMSs: 1)

supervised learning, 2) reinforcement learning, and

3) unsupervised learning.

Supervised Learning. Out of the systems we

surveyed supervised learning approach is the most

widely used learning paradigm (see Figure 1). The

training data required for supervised learning is

collected either beforehand or continuously during

query execution. Seq2SQL [3] and SQLNet [4] use

a large manually generated dataset of SQL and

natural language query pairs. Most other systems

(e.g., CardLearner [7], QPPNet [32], Naru [8],

AutoAdmin [14, 15], and Learned Index [26])

preform initial training from previously collected

training data and then perform periodic retraining as

new data becomes available or the query workload

or the data in the DBMS significantly change. In

some cases, collecting training data can be

expensive as it requires executing a large number of

queries potentially on large databases. However, the

prevalence of cloud databases has mitigated these

issues as cloud operators have access to large

amounts of query execution traces from many

tenants.

Reinforcement Learning. Reinforcement learning

(RL) methods are particularly applicable when a

system component has to make a series of decisions

and the reward of each decision is not directly

observable. Thus, RL methods have been used in

tasks including QEP generation (e.g., SkinnerDB

[10], ReJoin [12], Neo [13]), materialization

optimization (e.g., DQM [17]) and scheduling (e.g.,

Bandit [24]). RL methods perform on the job

training and collect data as the DBMS execute

queries. Initially, they may generate worse results as

the models have not converged yet. To overcome

this, one could use a bootstrapping strategy called

learn by demonstration where the existing DBMS

component is used to generate initial training data

for the RL model to bootstrap. After this initial

training, the RL model will continue to learn on the

job and become better than the existing DBMS

component. For example, Neo [13] showed the

feasibility of building an RL-based learned query

optimizer which surpasses the PostgreSQL DBMS

query optimizer, even though the RL model was

initially bootstrapped using it.

Unsupervised Learning. We found that

unsupervised learning techniques are widely used

for DBMS knob tuning in systems like iTuned [20],

OtterTune [21], and QB5000 [16]. One such

popular technique is to reduce the number of

different queries by performing clustering based on

query templates. While DBMS may encounter a

large number of different queries, most of them are

different parameterizations of the same query

template. Thus, by reducing the queries into query

templates the complexity for the ML model can be

significantly reduced. iTuned [20] and OtterTune

[21] also use Gaussian mixture models, another

unsupervised learning method, to model the DBMS

performance corresponding to different systems

configurations settings.

7. Open Challenges

Integrating ML methods into DBMS components

has proven to optimize average system

performance. Some systems have already integrated

ML into enterprise DBMSs [6, 7, 18]. However, the

field is still in its infancy and requires solving many

open challenges to realize the full potential. Next,

we identify three such major open challenges:

7.1 Improving Robustness

While ML methods improve the average query

execution performance, they can make

mispredictions that are significantly off and lend the

system become unrobust. On the contrary,

traditional software components are designed to

minimize the worst-case performance cost. Worst-

case performance guarantees are a crucial aspect of

software systems as one single fault can have ripple

effects and make the entire system unusable

eventually (e.g., the evaluation time difference

between a good QEP and bad QEP can be orders of

magnitude big). Understanding the worst-case

behavior of ML-driven software components is still

an untouched area and it is possible that coming up

with tight theoretical guarantees is a very hard

problem.

Another approach to solving the same problem

would be to integrate adaptive query execution

strategies with ML-driven components. This

requires observing the outcome of the decisions

taken by ML-driven components and dynamically

adjusting them when a performance degradation is

detected. Some initial work on this regard is

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25144

proposed in SkinnerDB [10]. SkinnerDB finds the

best join ordering for a query by using an intra-

query RL method that switches between different

orders before it finds the optimal one. It also

provides worst-case performance guarantees for this

method. However, this space is still very open and

much

work is needed to make ML-driven DBMS

components more robust.

7.2 Rethinking the DBMS Architecture

When people designed DBMS architectures several

decades ago, enabling autonomous control was not

a design goal. As a result, when one integrates ML

into DBMS components, they have to face several

fundamental architectural limitations. For example,

the separation of concerns such that the relational

engine making all the intelligent decisions and the

execution engine passively executing them no

longer holds. Decisions taken by the relational

engine when compiling the QEP may turn out to be

wrong when executing it. Thus, the relational

engine should be able to observe the performance of

a QEP as it executes and refine the decisions as new

in- formation becomes available. Such an approach

will require tight-coupling between the relational

and execution engines with feedback-loops.

Also, integrating ML into DBMS components

requires the ability to easily experiment and having

access to fine-grained system information. In

current DBMSs, especially with external

integration, it is very hard to profile and generate

training data for a specific component without

invoking the full QEP execution path, which is

costly. Furthermore, the level of system information

exposed by the DBMS is very coarse-grained. They

are intended to be consumed by humans for

debugging purposes and are too high-level for ML

model training. Some of these limitations have been

already identified and are being actively worked on

[30].

Exploiting Transfer Learning

There is limited success in learning transferable

knowledge that can be reused in multiple different

settings. For example, most of the ML models used

in existing DBMS components perform poorly

when there is a deviation in the query work-load or

a change in the system context or data. The situation

is even worse when they are applied to a new

DBMS instance or it is not possible to apply to a

new instance at all. This significantly increases the

cost of training and maintaining ML models and

faces

problems like cold-start and the need to

continuously retrain to keep up with the changes.

Transfer Learning is a technique that can be applied

to overcome this limitation, which is popular in

other fields such as computer vision and natural

language processing. Instead of training separate

models for different tasks from scratch, transfer

learning enables us to reuse a master model and

fine-tune it to the task at hand using limited

resources (e.g., compute power and training data).

This master model is trained on a very large dataset

so that it can learn most of the relevant information

for any related task. For example, ImageNet is a

popular computer vision transfer learning dataset

that has over 1 million hand-labeled images.

Identifying and curating such a dataset for DBMSs

require solving several open challenges. For

example, one has to select a common representation

format that can capture the data schema, data

statistics, query structure, and hardware properties.

Collecting such a large dataset is also a challenge.

However, the migration of DBMSs into the cloud

provides a unique opportunity to centrally collect all

the relevant information.

8. Conclusion

Combining machine learning (ML) tasks with

database management systems (DBMS) is an active

research field and there have been many efforts

exploring this both in research and industry. This

combination is attractive because businesses have

massive amounts of data in their existing DBMS

and there is a high potential for using ML to extract

valuable information from it [38]. In addition, the

rich relational operators provided by the DBMS can

be used conveniently to denormalize a complex

schema for the purposes of ML tasks [39]. Although

the field of machine learning is scaling heights, it is

ridden with several limitations as well. The

challenge for machine learning is to recover the

discipline’s original breadth of vision and its

audacity to develop learning mechanisms that cover

the full range of abilities observed in humans—who

remain our only example of truly intelligent systems

[40].

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25145

References

[1.] Ian Goodfellow, Yoshua Bengio, and Aaron

Courville. Deep Learning. MIT press, 2016.

[2.] Vraj Shah, Side Li, Arun Kumar, and

Lawrence Saul. SpeakQL: Towards Speech-

driven Multimodal Querying of Structured

Data.

[3.] Victor Zhong, Caiming Xiong, and Richard

Socher. Seq2sql: Generating Structured

Queries from Natural Language Using

Reinforcement Learning. arXiv preprint

arXiv:1709.00103, 2017.

[4.] Xiaojun Xu, Chang Liu, and Dawn Song.

SQLNet: Generating Structured Queries

from Natural Language without

Reinforcement Learning. arXiv preprint

arXiv:1711.04436, 2017.

[5.] Viktor Leis, Bernhard Radke, Andrey

Gubichev, Atanas Mirchev, Peter Boncz,

Alfons Kemper, and Thomas Neumann.

Query Optimization Through the Looking

Glass, and What We Found Running the

Join Order Benchmark. The VLDB Journal,

27(5):643–668, 2018.

[6.] Michael Stillger, Guy M Lohman, Volker

Markl, and Mokhtar Kandil. LEO-DB2’s

learning optimizer. In VLDB, volume 1,

pages 19–28, 2001.

[7.] Chenggang Wu, Alekh Jindal, Saeed

Amizadeh, Hiren Patel, Wangchao Le, Shi

Qiao, and Sriram Rao. Towards a Learning

Optimizer for Shared Clouds. Proceedings

of the VLDB Endowment, 12(3):210–222,

2018.

[8.] Zongheng Yang, Eric Liang, Amog

Kamsetty, Chenggang Wu, Yan Duan, Xi

Chen, Pieter Abbeel, Joseph M Hellerstein,

Sanjay Krishnan, and Ion Stoica. Deep

Unsupervised Cardinality Estimation.

Proceedings of the VLDB Endowment,

13(3):279–292, 2019.

[9.] Benjamin Hilprecht, Andreas Schmidt,

Moritz Kulessa, Alejandro Molina, Kristian

Kersting, and Carsten Binnig. DeepDB:

Learn from Data, not from Queries!

Proceedings of the VLDB Endowment,

13(7):992– 1005, 2020.

[10.] Immanuel Trummer, Junxiong Wang,

Deepak Maram, Samuel Moseley, Saehan

Jo, and Joseph Antonakakis. SkinnerDB:

Regret-Bounded Query Evaluation via

Reinforcement Learning. In Proceedings of

the 2019 International Conference on

Management of Data, pages 1153–1170,

2019.

[11.] Levente Kocsis and Csaba Szepesvári.

Bandit based Monte-Carlo Planning. In

European conference on machine learning,

pages 282–293. Springer, 2006.

[12.] Ryan Marcus and Olga Papaemmanouil.

Deep Reinforcement Learning for Join

Order Enumeration. In Proceedings of the

First International Workshop on Exploiting

Artificial Intelligence Techniques for Data

Management, pages 1–4, 2018.

[13.] Ryan Marcus, Parimarjan Negi, Hongzi

Mao, Chi Zhang, Mohammad Alizadeh,

Tim Kraska, Olga Papaemmanouil, and

Nesime Tatbul. Neo: A Learned Query

Optimizer. Proceedings of the VLDB

Endowment, 12(11):1705–1718, 2019.

[14.] Surajit Chaudhuri and Vivek Narasayya.

Self-Tuning Database Systems: A Decade of

Progress. In Proceedings of the 33rd

international conference on Very large data

bases, pages 3–14, 2007.

[15.] Bailu Ding, Sudipto Das, Ryan Marcus,

Wentao Wu, Surajit Chaudhuri, and Vivek

R Narasayya. AI meets AI: Leveraging

Query Executions to Improve Index

Recommendations. In Proceedings of the

2019 International Conference on

Management of Data, pages 1241–1258,

2019.

[16.] Lin Ma, Dana Van Aken, Ahmed Hefny,

Gustavo Mezerhane, Andrew Pavlo, and

Geoffrey J Gordon. Query-based Workload

Forecasting for Self-Driving Database

Management Systems. In Proceedings of the

2018 International Conference on

Management of Data, pages 631–645, 2018.

[17.] Xi Liang, Aaron J Elmore, and Sanjay

Krishnan. Opportunistic View

Materialization with Deep Reinforcement

Learning. arXiv preprint arXiv:1903.01363,

2019.

[18.] Yongjoo Park, Ahmad Shahab Tajik,

Michael Cafarella, and Barzan Mozafari.

Database Learning: Toward a Database that

Becomes.

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25146

Smarter Every Time. In Proceedings of the

2017 ACM International Conference on

Management of Data, pages 587–602, 2017.

[19.] Qingzhi Ma and Peter Triantafillou. DBEst:

Revisiting Approximate Query Processing

Engines with Machine Learning Models. In

Proceedings of the 2019 International

Conference on Management of Data, pages

1553–1570, 2019.

[20.] Songyun Duan, Vamsidhar Thummala, and

Shivnath Babu. Tuning Database

Configuration Parameters with iTuned.

Proceedings of the VLDB Endowment,

2(1):1246–1257, 2009.

[21.] Dana Van Aken, Andrew Pavlo, Geoffrey J

Gordon, and Bohan Zhang.

Automatic Database Management System

Tuning through Large-Scale Machine

Learning. In Proceedings of the 2017 ACM

International Conference on Management of

Data, pages 1009–1024, 2017.

[22.] Jian Tan, Tieying Zhang, Feifei Li, Jie

Chen, Qixing Zheng, Ping Zhang, Honglin

Qiao, Yue Shi, Wei Cao, and Rui Zhang.

iBTune: Individualized Buffer Tuning for

Large-Scale Cloud Databases. Proceedings

of the VLDB Endowment, 12(10):1221–

1234, 2019.

[23.] Ryan Marcus and Olga Papaemmanouil.

WiSeDB: A Learning-Based Workload

Management Advisor for Cloud Databases.

Proc. VLDB Endow., 9(10):780–791, June

2016.

[24.] Ryan Marcus and Olga Papaemmanouil.

Releasing Cloud Databases for the Chains

of Performance Prediction Models. In

CIDR, 2017.

[25.] perfenforce demonstration: Data analytics

with performance guarantees.

[26.] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey

Dean, and Neoklis Polyzotis. The Case for

Learned Index Structures. In Proceedings of

the 2018 International Conference on

Management of Data, pages 489–504, 2018.

[27.] Alex Galakatos, Michael Markovitch,

Carsten Binnig, Rodrigo Fonseca, and Tim

Kraska. FITing-Tree: A Data-aware Index

Structure. In Proceedings of the 2019

International Conference on Management of

Data, pages 1189–1206, 2019.

[28.] Chuzhe Tang, Youyun Wang, Zhiyuan

Dong, Gansen Hu, Zhaoguo Wang, Minjie

Wang, and Haibo Chen. XIndex: A Scalable

Learned Index for Multicore Data Storage.

In Proceedings of the 25th ACM SIGPLAN

Symposium on Principles and Practice of

Parallel Programming, pages 308–320,

2020.

[29.] Andrew Pavlo, Matthew Butrovich, Ananya

Joshi, Lin Ma, Prashanth Menon, Dana Van

Aken, Lisa Lee, and Ruslan Salakhutdinov.

External vs. Internal: An Essay on Machine

Learning Agents for Autonomous Database

Management Systems. IEEE Data

Engineering, 11:1910–1913, 2019.

[30.] Andrew Pavlo, Gustavo Angulo, Joy

Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,

Prashanth Menon, Todd C Mowry, Matthew

Perron, Ian Quah, et al. Self-Driving

Database Management Systems. In CIDR,

volume 4, page 1, 2017.

[31.] Tim Kraska, Mohammad Alizadeh, Alex

Beutel, Ed H Chi, Jialin Ding, Ani Kristo,

Guillaume Leclerc, Samuel Madden,

Hongzi Mao, and Vikram Nathan. Sagedb:

A Learned Database System. 2019.

[32.] Ryan Marcus and Olga Papaemmanouil.

Plan-Structured Deep Neural Network

Models for Query Performance Prediction.

Proceedings of the VLDB Endowment,

12(11):1733–1746, 2019.

[33.] Mitchell, T. (1997). Machine Learning.

McGraw Hill. p. 2. ISBN 978-0-07-042807-

2.

[34.] O. Simeone, "A Very Brief Introduction to

Machine Learning With Applications to

Communication Systems," in IEEE

Transactions on Cognitive Communications

and Networking, vol. 4, no. 4, pp. 648-664,

Dec. 2018, doi:

10.1109/TCCN.2018.2881442.

[35.] Alpaydin, Ethem (2010). Introduction to

Machine Learning. London: The MIT Press.

ISBN 978-0-262-01243-0. Retrieved 1

August 2020.

[36.] K. Kara, K. Eguro, C. Zhang, and G.

Alonso. ColumnML: Column-Store

Machine Learning with On-the-Fly Data

Transformation. PVLDB, 12(4):348–361,

2018.

Sai Tanishq N, IJECS Volume 09 Issue 08 August, 2020 Page No. 25116-25147 Page 25147

[37.] A. Kumar, J. Naughton, and J. M. Patel.

Learning generalized linear models over

normalized data. In Proceedings of the 2015

ACM SIGMOD International 360

Conference on Management of Data, pages

1969–1984. ACM, 2015.

[38.] Alonso, G., Istvan, Z., Kara, K., Owaida, M.

and Sidler, D., 2019. doppioDB 1.0:

Machine Learning inside a Relational

Engine. IEEE Data Eng. Bull., 42(2), pp.19-

31

[39.] A. Kumar, J. Naughton, and J. M. Patel,

―Learning Generalized Linear Models Over

Normalized Data,‖ in SIGMOD’15.

[40.] Langley, Pat (2011). "The changing science

of machine learning". Machine Learning. 82

(3): 275–279. doi:10.1007/s10994-011-

5242-y.

.

